-->
研究生学术报告:Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm

Created Date 1/2/2020 晶晶   View Numbers  48 Return    
字号:   
 

时间20200103日上午9:00-10:00
地点:机自大楼319
报告人:陈康帅 18722247机械电子工程(导师:章亚男教授)
 
内容简介
Objective. Recent attempts in developing brain–computer interface (BCI)-controlled robots have shown the potential of this area in the field of assistive robots. However, implementing the process of picking and placing objects using a BCI-controlled robotic arm still remains challenging. BCI performance, system portability, and user comfort need to be further improved. Approach. In this study, a novel control approach, which combines high-frequency steady-state visual evoked potential (SSVEP)-based BCI and computer vision-based object recognition, is proposed to control a robotic arm for performing pick and place tasks that require control with multiple degrees of freedom. The computer vision can identify objects in the workspace and locate their positions, while the BCI allows the user to select one of these objects to be acted upon by the robotic arm. The robotic arm was programmed to be able to autonomously pick up and place the selected target object without moment-by-moment supervision by the user. Main results. Online results obtained from ten healthy subjects indicated that a BCI command for the proposed system could be selected from four possible choices in 6.5 s (i.e. 2.25 s for visual stimulation and 4.25 s for gaze shifting) with 97.75% accuracy. All subjects could successfully complete the pick and place tasks using the proposed system. Significance. These results demonstrated the feasibility and efficiency of combining high-frequency SSVEP-based BCI and computer vision-based object recognition to control robotic arms. The control strategy presented here could be extended to control robotic arms to perform other complicated tasks.


版权所有 © 上海大学    沪ICP备09014157   地址:上海市宝山区上大路99号(周边交通)   邮编:200444   电话查询
技术支持:上海大学信息化工作办公室   联系我们